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ABSTRACT
Continual few-shot learning, as a paradigm that simultaneously
solves continual learning and few-shot learning, has become a
challenging problem in machine learning. An eligible continual
few-shot learning model is expected to distinguish all seen classes
upon new categories arriving, where each category only includes
very few labeled data. However, existing continual few-shot learn-
ing methods only consider the visual modality, where the distri-
butions of new categories often indistinguishably overlap with
old categories, thus resulting in the severe catastrophic forgetting
problem. To tackle this problem, in this paper we study continual
few-shot learning with the assistance of semantic knowledge by
simultaneously taking both visual modality and semantic concepts
of categories into account. We propose a Continual few-shot learn-
ing algorithm with Semantic knowledge Regularization (CoSR) for
adapting to the distribution changes of visual prototypes through a
Transformer-based prototype adaptation mechanism. Specifically,
the original visual prototypes from the backbone are fed into the
well-designed Transformer with corresponding semantic concepts,
where the semantic concepts are extracted from all categories. The
semantic-level regularization forces the categories with similar
semantics to be closely distributed, while the opposite ones are
constrained to be far away from each other. The semantic regular-
ization improves the model’s ability to distinguish between new
and old categories, thus significantly mitigating the catastrophic
forgetting problem in continual few-shot learning. Extensive ex-
periments on CIFAR100, miniImageNet, CUB200 and an industrial
dataset with long-tail distribution demonstrate the advantages of
our CoSR model compared with state-of-the-art methods.
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1 INTRODUCTION
Deep neural networks (DNNs) have achieved great success when a
large amount of labeled data are available. For example, DNNs are
able to accurately conduct image classifications upon well training
over enough labeled data. In practice, we always have new data and
tasks arriving in sequence, craving for an ideal machine learning
model which is able to recognize newly-arrived data associated
with new classes and maintain the knowledge of previous classes
simultaneously. Continual learning is such a learning paradigm,
aiming to alleviate the catastrophic forgetting of old classes upon se-
quential arrival of new classes [16, 23]. Nevertheless, the amount of
newly-arrived data is usually limited, thus requiring that the model
can quickly adapt to new classes with few-shot data. Continual few-
shot learning, as a paradigm that simultaneously solves continual
learning and few-shot learning [1, 36], has attracted an increasing
number of attentions in the research community recently.

Compared with the traditional learning paradigm, continual few-
shot learning is more analogous to human learning since humans
can learn new concepts from a limited amount of data and maintain
most of the previously old knowledge simultaneously. There are two
learning phases in continual few-shot learning, the base learning
phase and the continual learning phase. In the base learning phase,
the model is trained with base classes with full labeled data for each
class. Then in the continual learning phase, the model is expected
to learn new classes with a small amount of labeled data while
maintaining the knowledge of base classes. Given that the labels
from new classes have not appeared in the base classes, continual
few-shot learning requires that the model should quickly adapt
to the distribution changes from new classes as well as maintain
the ability to distinguish all old classes. Due to the unavailable old
classes during the continual learning phase, the distributions fitted
based on new classes tend to overlap with those fitted based on old
classes, which results in the failure of traditional machine learning
approaches in distinguishing the new classes from old classes. In
sum, there exist two key challenges in continual few-shot learning.
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(1) The catastrophic forgetting issue that traditional deep learn-
ing models tend to over-fit the new classes while forgetting
the knowledge of old classes.

(2) The requirement of fast learning ability with only a limited
amount of labeled data from new classes.

On the one hand, there are existing works in continual learn-
ing, focusing on the problem of catastrophic forgetting. Some
works [4, 16, 19] tackle the forgetting problem through constraining
the parameter shifts in the deep learningmodel. Several works [2, 22,
23, 30] also propose to extend the model or learn parameter masks
for new classes. Other works [8, 21, 27, 32] suggest using rehearsal
memory by storing samples from previous classes or generating
samples to alleviate forgetting. On the other hand, the above models
on continual learning suffer from relatively large estimation errors
when only a limited number of samples are available, motivating
the advent of continual few-shot learning which learns prototypes
based on the given support images, and classifies the input image
according to distance criteria such as Euclidean distance and co-
sine distance etc. Several existing approaches [5, 24, 28, 44, 45, 47]
generate adaptive prototypes through well-designed adaptive mech-
anisms which only utilize visual signals of images without consider-
ing the semantic knowledge hidden in text as well as the semantic
association between the base and new classes. Other work [7]makes
use of word embeddings to align visual prototypes in textual fea-
ture space, where the sparsely distributed textual space may not be
suitable for visual prototype learning. However, the existing works
severely ignore the importance of semantic knowledge in helping
to distinguish both new and old classes upon continually arriving
tasks, thus failing to solve the catastrophic forgetting and the fast
learning problems simultaneously.

To solve the problem, we propose to extract the semantic knowl-
edge from categorical information as a regularization for learning
the consistent semantic visual prototypes. This design enables us
to conduct continual classification through nearest neighbor in-
stead of fine-tuning the model with a limited amount of data. Fig-
ure 1 demonstrates the comparison between existing works with
only visual prototypes matching and our proposed model with se-
mantic knowledge regularization. Given that the learnable visual
prototypes can significantly reduce the estimation error with a
limited amount of data samples, a Transformer-based adaptation
mechanism is designed to align the visual and textual prototypes.
Specifically, we propose a continual few-shot learning model with
semantic regularization, CoSR, which is a Transformer-based pro-
totype adaptation mechanism adapting the distributions of visual
prototypes with semantic knowledge regularization. As the sequen-
tial data from new classes arrive, our proposed CoSR model is able
to achieve fast adaption through re-calculating the previous visual
prototypes with few-shot labeled samples. With the single visual
modality, the estimation of prototypes usually suffers from large
errors. Thus, we employ semantic knowledge to assist the learning
of visual prototypes, where the semantic knowledge is extracted
from the textual prototype of each class through a linear affine
layer. The previous visual prototypes and the textual prototypes
are fed into a Transformer layer to obtain the adaptive prototypes,
where the Transformer module aims at mining complex relation-
ships between visual and textual prototypes to generate enhanced
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(a) Baselines with Only Visual Prototypes Matching
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Figure 1: The concept of our proposed CoSR model. (a) Exist-
ing works usually learn prototypes using a single modality
to classify the query image. (b) Our CoSR model learns the
visual prototypes with semantic knowledge regularization.
This Transformer-based prototype adaptation mechanism
enhances visual prototypes with the semantic association
among classes and thus alleviates the forgetting issue.

prototypes for continual classification learning. The textual pro-
totypes in the common latent space can provide valid anchors for
the visual prototypes during the continual learning process, thus
alleviating catastrophic forgetting significantly. Experiments on
both public and industrial datasets demonstrate the advantages of
the proposed CoSR model against baseline approaches.

The contributions of this work can be summarized as follows,
• We propose a continual few-shot learning algorithm with
semantic knowledge regularization, CoSR, to tackle the cata-
strophic forgetting of previously old classes when quickly
learning the new classes.

• We utilize semantic knowledge from each class to mine the
natural semantic association among classes, significantly
enhancing the learning process for visual features.

• We design a Transformer-based prototype adaptation mech-
anism to adapt visual prototypes with semantic knowledge
regularization, improving the ability to distinguish old and
new classes in continual few-shot learning.

• We conduct extensive experiments on both public and in-
dustrial datasets to demonstrate the superiority of our CoSR
model over the state-of-the-art approaches.

2 RELATEDWORK
In this section, we review related works on traditional continual
learning, few-shot learning and the most recent continual few-shot
learning, which are most relevant to our work.
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Continual Learning. Continual learning aims to continually learn
new categories and classify all seen categories. There are three
main solutions from the perspective of reducing catastrophic for-
getting or interference. Regularization-based methods [4, 16, 19]
introduce prior distribution of parameters to penalize the shifts of
important parameters or use knowledge distillation as data regu-
larization. Model expansion-based methods [2, 22, 23, 30] propose
to dedicate different parameters to each task by freezing the old
task parameters or adding parameter masks. These works usually
suffer from large model storage, with new classes continually ar-
riving. Replay-based methods [8, 21, 27, 32, 42] store or generate
old samples in memory to balance the old and new tasks and al-
leviate forgetting. Our work is related to continual learning, but
more challenging with fewer samples in the new classes. With a
few training samples, fine-tuning the feature space will bring a
relatively large estimation error. Therefore, we solve the problem
through prototype adaptation with semantic knowledge.

Few-shot Learning. Traditional few-shot learning aims to dis-
tinguish unseen classes with few given data, but ignores the dis-
tinction between the new and old categories [38]. There are three
mainstreams of few-shot learning. Data generation based meth-
ods [12, 13, 29, 39] usually apply a pre-defined data generation func-
tion to expand the training data of unseen categories. Metric based
methods [6, 25, 33, 34, 37] focus on embedding learning or refining
for the few-shot tasks. Meta-learning based methods [11, 20, 40, 46]
use prior knowledge to search an optimal initialized parameter.
Our work is more related to metric-based methods since we use
semantic knowledge as regularization to refine the prototypes in
the feature space. Different from traditional few-shot learning, con-
tinual few-shot learning requires that the model should not only
recognize new categories but also maintain the ability to distinguish
between all seen categories.

Continual Few-shot Learning. Continual few-shot learning has
been studied recently. F2M [31] suggests that flat local minima in
the training of base classes can facilitate the learning of new classes.
TOPIC [36] and TPCIL [35] are both topology preserved methods
that learn and preserve the topology of the feature manifold to
mitigate forgetting of the old classes. ERDIL [10] also selects rep-
resentative samples in old categories to construct a relation graph
for knowledge distillation, which eases the forgetting problem in
continual few-shot learning. Some works [18, 43] solve the prob-
lem through calibrating features or classifiers of new categories
to alleviate forgetting. Other works [5, 24, 28, 44, 45, 47] propose
to generate adaptive prototypes (reference vectors or classifiers)
through well-designed adaptive mechanism. However, they mostly
focus on the single modality of images for feature learning, ignoring
the semantic association among classes. Semantic knowledge is
used in works [1, 7] as external information for continual few-shot
learning. Cheraghia et al. [7] make use of word embeddings as
semantic information to align visual and semantic vectors with an
attention mechanism. The visual features are directly projected to
the sparse textual space, which may suppress the effect of visual
information. Akyürek et al. [1] propose to learn the new classifiers
with the regularization of semantic similarity. The semantic associ-
ation among different categories is linearly affine to the space of
classifiers.

Our work is different from the above methods in semantic regu-
larization terms. We design two schemes for the use of semantic
knowledge. One is aligning the visual and textual vectors of each
category with a Transformer. Another is extracting semantic pro-
totypes in the visual space using textual information and then
enhancing the visual prototypes with semantic ones.

3 THE PROPOSED METHOD
Our proposed CoSR model consists of two stages, the base learning
phase and the continual learning phase. The CoSR model is first
trained with base data and then continually learns with newly-
arrived few-shot data.

3.1 Problem Formulation
We define the continual few-shot learning setting as follows. Given
a sequence of tasks {𝑇0,𝑇1, ...,𝑇𝐼 }, where the number of tasks is 𝐼 .
Each task 𝑇𝑖 (0 ≤ 𝑖 ≤ 𝐼 ) contains a test set 𝐷 (𝑖 )

𝑡𝑒𝑠𝑡 and a training
set 𝐷 (𝑖 )

𝑡𝑟𝑎𝑖𝑛
, where 𝐷 (𝑖 )

𝑡𝑟𝑎𝑖𝑛
=

{
𝑋

(𝑖 )
𝑘
, 𝑦

(𝑖 )
𝑘

}𝐾𝑖

𝑘=1, 𝑦
(𝑖 )
𝑘

∈ 𝐶 (𝑖 ) . Here, 𝐾𝑖
is the number of samples in 𝐷 (𝑖 )

𝑡𝑟𝑎𝑖𝑛
and 𝐶 (𝑖 ) is the label set of

task 𝑇𝑖 . Considering that there is no category overlap between
different tasks, we have ∀𝑖, 𝑗,𝐶 (𝑖 ) ∩𝐶 ( 𝑗 ) = ∅. In continual few-shot
learning, task𝑇0 is named as the base task, including a full training
set of base classes. Each task 𝑇𝑖,𝑖>0 is a novel task or new task,
which only includes a few samples for training. Usually, if there
are 𝐾 data samples within each of the 𝐶 new classes in each novel
task, then the setting is called 𝐶-way 𝐾-shot problem. To follow
the common practice in continual few-shot learning, the training
samples in the base task and novel tasks are severely unbalanced
with 𝐾 normally being smaller than 5, while the size of the test set
in each task is balanced. Therefore, we should first train a continual
few-shot learning model on the base task and then continue to
learn novel tasks in sequence. After training on 𝐷 (𝑖 )

𝑡𝑟𝑎𝑖𝑛
for the 𝑖-

th task, a continual few-shot learning model is evaluated on the
test set for both the current task and those previous tasks, i.e.,{
𝐷
(0)
𝑡𝑒𝑠𝑡 , 𝐷

(1)
𝑡𝑒𝑠𝑡 , ..., 𝐷

(𝑖 )
𝑡𝑒𝑠𝑡

}
. This challenging setting requires a good

continual few-shot learning model to quickly learn with a very
small number of data samples for the novel task while maintaining
the capability of distinguishing between previous classes and new
classes simultaneously.

3.2 Continual Few-shot Learning with Semantic
Knowledge Regularization

The challenge of continual few-shot learning comes from two as-
pects: i) the fast adaptive learning of new classes and ii) the cata-
strophic forgetting of old classes. In the base learning phase, the
model is trained with base classes to learn the base task distribution
in the latent feature space. In the continual learning phase, the
distributions of new classes should be quickly learned given only a
few samples, where the distributions of new classes usually tend
to overlap with previously old classes in the latent feature space,
thus leading to the catastrophic forgetting problem. To tackle the
challenging issue, we extract semantic information from the textual
modality to help the model to discover better feature space in which
the new and previous classes do not overlap.
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(a) Continual Few-shot Learning with Semantic Knowledge Regularization (CoSR) (b) Semantic Fusion Transformer
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Figure 2: (a) The framework of our proposed CoSR model. In the base learning phase, the backbone and the semantic fusion
Transformer are trained according to the query classification loss and semantic consistency loss. In the continual learning phase,
the model obtains the semantically consistent visual prototypes through the Transformer. The nearest neighbor principle is
used for classification. (b) The structure illustration of our semantic fusion Transformer. Best view in color.

As shown in Figure 2 (a), the base learning phase includes mul-
tiple training episodes. In each episode, a support set of 𝐶-way
𝐾-shot is sampled from the base database. The query set is also
sampled from the same class in the base database as the support
set. Both the query and support images are fed into the learnable
CNN backbone to obtain the corresponding visual features. Accord-
ing to the latent representations of support images transformed
via the CNN backbone, the visual prototype, denoted as 𝑒𝑣 , can
be computed as the center of each category. Intuitively, we can
calculate the Euclidean distance or cosine distance between the
query representation 𝑒𝑞 and each visual prototype 𝑒𝑣 to decide
which category the query belongs to. However, the representation
space may change in the course of time because the distributions of
new classes can drift away from the base classes. Thus, the visual
prototypes obtained from previous categories may shift and even
overlap with new prototypes in the latent space, resulting in the
performance drop of the continual learning model.

Naturally, the semantic knowledge of each class can provide use-
ful information for learning visual prototypes. For example, given
that “bulldog” and “cat” both belong to “animal”, the prototype
of cats should be quickly learned and adapted with the help of
semantic similarity upon learning the semantic concept of dogs.
On the other hand, the semantic similarity can provide anchors
to the visual prototypes, capable of reducing the distribution drift
from old prototypes. Therefore, we introduce semantic knowledge
regularization to prevent the prototype from drifting with the help
of Transformer adaptation. The word embedding of each category
can be employed as semantic knowledge, since the distribution
of word embedding may reflect the semantic association among
different categories. Specifically, the word embedding of each cate-
gory is calculated via a pre-trained model before being projected to
the latent space via Projector, the learnable backbone with a linear

affine layer, where the projected vector 𝑒𝑡 is denoted as the textual
prototype of each category.

Upon obtaining the visual prototypes and textual prototypes of
all support classes, we design a semantic fusion Transformer to
model the complex semantic relationships among different classes.
As shown in Figure 2 (a), the visual features which concatenate
the query representation and the visual prototypes, as well as the
textual prototypes, are fed into the semantic fusion Transformer
to obtain the adaptive query representation and prototypes. The
detailed structure of the semantic fusion Transformer is illustrated
in Figure 2 (b). Through the semantic fusion Transformer, the multi-
modal information containing visual features as well as textual
prototypes can be fused and enhanced with each other via the
self-attention mechanism. The feed-forward layer is designed to
map the multimodal information into a common latent space. The
output of the semantic fusion Transformer is the adaptive query
representation 𝑒′𝑞 , visual prototype 𝑒′𝑣 and textual prototype 𝑒′𝑡 ,
resulting in the following expression illustrated by Eq.(1):

𝑒′𝑞, 𝑒
′
𝑣, 𝑒

′
𝑡 = T (𝑒𝑞, 𝑒𝑣, 𝑒𝑡 ), (1)

where T represents the semantic fusion Transformer. We employ
the adaptive textual prototype 𝑒′𝑡 as the anchor in the common
latent space. The learnable visual prototype 𝑒′𝑣 is expected to align
with anchor 𝑒′𝑡 . Therefore, we propose the semantic knowledge
regularization term in Eq.(2) to align 𝑒′𝑣 and 𝑒′𝑡 , indicating whether
the visual and textual prototypes are semantically consistent.

𝑚𝑣 = argmax
𝑡

(
𝑒′𝑣 · 𝑒′𝑡

)
,

𝐿𝑚 =
∑︁
𝑣

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑚𝑣, 𝑔𝑣),
(2)

where𝑚𝑣 is the maximum calculated matching probability between
the visual prototype 𝑒′𝑣 and textual prototype 𝑒′𝑡 . 𝑔𝑣 is the ground
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truth label which indicates the true matching between the visual
prototype 𝑒′𝑣 and its corresponding textual prototype. The cross
entropy loss is used for the semantic consistency loss 𝐿𝑚 .

Besides, the adaptive query representation 𝑒′𝑞 is categorized uti-
lizing the nearest neighbor principle. The distance between the
adaptive query representation 𝑒′𝑞 and each visual prototype 𝑒′𝑣 is
calculated so that 𝑒′𝑞 is assigned to the class with the minimum dis-
tance in the latent space. Without loss of generality, we use cosine
distance as the metric and cross-entropy loss as the query loss term
𝐿𝑞 , as shown in Eq.(3),

𝑐𝑞 = argmax
𝑣

(
𝑒′𝑞 · 𝑒′𝑣

)
,

𝐿𝑐 =
∑︁
𝑞

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑐𝑞, 𝑦𝑞),
(3)

where 𝑐𝑞 is the predicted class label of the query representation 𝑒′𝑞
and 𝑦𝑞 is the ground truth class label of the query representation,
indicating which class the query belongs to. The overall training
objective is illustrated in Eq.(4) as follows,

𝐿 = 𝐿𝑐 + 𝜆 · 𝐿𝑚, (4)

where 𝜆 is the controlling factor to balance the query loss 𝐿𝑐 and
the semantic consistency loss 𝐿𝑚 .

3.3 Discussions
The continual few-shot learning procedure consists of two phases: i)
base learning on the base task, where the backbones and the seman-
tic fusion Transformer are trained on the full dataset of the base task;
ii) continual learning on sequentially coming new tasks, where the
model first learns visual and textual prototypes of new classes and
then obtains the semantically consistent visual prototypes through
Transformer adaptation. Upon learning every observable task, the
proposed CoSR model is tested with all available classes.

Base Learning on Base Task.As shown in Figure 2 (a), the base
learning phase includes multiple episodes. In each episode, the 𝐶-
way 𝐾-shot support images as well as the query image are sampled
from the database. The word embedding of all categories are pre-
calculated to be employed as semantic information. The support
images and query image are fed into the CNN backbone to obtain
the visual features. We calculate the average latent representations
of images in each class as the visual prototype for the corresponding
category. The word embedding of each category is projected into
the shared latent space with the visual prototypes through a linear
affine layer. Then we use the semantic fusion Transformer depicted
in Figure 2 (b) to generate adaptive visual and textual prototypes
as well as the adaptive query representation. The whole model is
trained in an end-to-end manner with the total objective 𝐿, where
the query loss 𝐿𝑐 aims to distinguish from different categories in
the latent space. The proposed semantic consistency loss 𝐿𝑚 will
encourage the alignment of the visual and textual prototypes, as
well as enhance the visual prototypes with semantic information
indicated in the textual prototypes. Compared to existing methods
that ignore the semantic association among classes, our proposed
CoSR model utilizes the semantic association among categories
to facilitate the learning of visual features. The textual prototypes
learned in this phase provide anchors in the latent space, which

simultaneously alleviates the forgetting issue in continual learning
and accelerates the learning of new knowledge.

Continual Learning on New Tasks. After the base learning
phase, the new tasks are expected to arrive in sequence. We assume
that the backbones have been well-trained during the base learning
phase, since the visual features usually reflect low-level visual in-
formation. The subsequent classification module then tends to play
a more important role in achieving the continual few-shot learning.
For the 𝑡-th task, we first obtain the visual prototypes through the
newly arriving𝐶-way 𝐾-shot samples and the textual prototypes of
corresponding categories. The old and new textual prototypes may
contain semantic information and reflect relationships between dif-
ferent classes. We use the semantic fusion Transformer to produce
adaptive visual prototypes, which are enhanced by the semantic
information carried in the textual prototypes. The adaptive visual
prototypes benefit from the semantic information regularization
and thus are capable of reducing the estimation errors with only a
very small number of samples. Finally, the query image is assigned
to its best matching category whose adaptive prototype has the
minimum cosine distance from the adaptive query representation
via the nearest neighbor principle. The proposed semantic fusion
Transformer is able to learn adaptive prototypes for novel and
unseen tasks, alleviating the catastrophic forgetting issue.

4 EXPERIMENTS
We conduct extensive experiments to compare the proposed CoSR
model with several baselines on three public datasets. To verify the
effectiveness of CoSR in the real-world scenario, we further test
CoSR on an industrial dataset as well.

4.1 Experimental Settings
Datasets. Following existing literature [36, 44], we conduct contin-
ual few-shot learning experiments on three popular datasets, i.e.,
CIFAR100 [17], MiniImageNet [37] and CUB200 [41]. For CIFAR100
and MiniImageNet, we sample 60 classes as the base learning task.
The novel task includes 5-way 5-shot samples each, and there are
8 tasks in the continual learning stage. As for CUB200, the base
learning task contains 100 classes and each novel task has 10-way
5-shot samples, with the total number of novel tasks being set to
10. In addition, we test our proposed CoSR model on Goofish1, an
industrial dataset for online commodity purchase services, where
the goal of the service provider is to recognize prohibited commodi-
ties through continual classification of the new items. The dataset
includes images, titles, and descriptions for online items, serving
as an appropriate scenario for multi-modal continual classification.
The label of each data sample indicates the category of the item
with multi-modal information, and each category has a human un-
derstandable name as semantic knowledge in the dataset. The size
of Goofish dataset is 1.8 million items with 161 classes. We split the
dataset into the training and test set according to the timestamp,
resulting in the training set of 1.5 million items, and the test set of
300𝐾 items. Note that the training set and test set are split without
overlap. There are several classes with only 30 samples in the test
set which never appear in the training set, serving as a typical
continual few-shot learning setting.
1https://goofish.com/
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Figure 3: The visualization of experimental results on CIFAR100, MiniImageNet and CUB200. We compare the proposed CoSR
model with state-of-the-art baselines in continual few-shot learning. Best view in color.

Semantic Knowledge. We use pre-trained vectorized word
embedding as the semantic knowledge in the experiments. For CI-
FAR100 and MiniImageNet, we employ 300 dimensional GloVe [26]
vectors as the extracted semantic knowledge. For CUB200, the
768 dimensional Bert [9] vectors are utilized to extract semantic
knowledge. For the industrial dataset, we use the pre-trained 512
dimensional embedding of class names as semantic knowledge.

Evaluations. After training on the base learning task 𝑇0, the
test accuracy is calculated on the test set of the base learning task.
Then the model sequentially gets trained upon the arrival of new
tasks. After learning the 𝑖-th new task, the mean test accuracy is
calculated on all observable tasks𝑇0,𝑇1, ...,𝑇𝑖 . The evaluation metric
is the final test accuracy over all categories when the learning of
the last task finishes. Besides, the performance drop rate (PD rate),
i.e., the percentage of average accuracy drops in the last task w.r.t.
the accuracy after the base task learning, is also used to measure
the ability to learn new tasks while alleviating the catastrophic
forgetting issue.

Baselines.We compare our CoSR with several state-of-the-art
baselines. We take the “fine-tune” approach as the lower bound of
the model performances, which just fine-tunes the model for each
task. Several methods [3, 15, 27] for continual learning are compared
as baselines. Existing state-of-the-art approaches [7, 36, 44, 47] for
continual few-shot learning are also tested in the experiments.

Implementations.We conduct experiments using PyTorch li-
brary. Following the common practice [44], ResNet20 [14] is em-
ployed as CNN backbone for CIFAR100 and ResNet18 [14] is utilized
as CNN backbone on MiniImageNet as well as CUB200. The Pro-
jector consists of one linear affine layer, the output of which is
the same as the CNN backbone. We use SGD with momentum for
optimization and the learning rate is set to 0.0001. The learning
rate is decayed by 0.5 every 20 epochs. The total number of training
epochs in the base learning phase is 100. For all experiments, we
take the average performance of 5 runs and report the final results.

4.2 Experimental Results on Public Datasets
CIFAR100. We conduct continual few-shot learning experiments
on CIFAR100 and visualize the results in Figure 3. The figure demon-
strates the test accuracy over all observable categories after each

task. We compare our method CoSR with other baselines. As shown
in the figure, the initial test accuracies after learning the base task
of CEC and our CoSR are higher than other models whose test accu-
racy is about 64%. The reason is that CEC and our CoSR both train
the model through sampling dataset in multiple episodes, while
other methods train the base model with the full dataset. With the
increasing of novel tasks, the test accuracy of each model drops
due to the forgetting of old classes and inefficient learning of new
classes with only a few samples. The traditional continual learning
approaches such as iCaRL, EEIL and NCMperformworse than other
methods since they usually need a large amount of data to learn
new classes. The continual few-shot learning approaches can learn
the novel tasks efficiently, thus adapting quickly to the few-shot
scenarios with a well-designed learning mechanism. Among all the
methods, our CoSR has the best performances after learning all
tasks. The performance drop of CoSR is also less than other meth-
ods, which indicates that our method has better ability to alleviate
forgetting with the semantic knowledge regularization.

More specifically, we report the detailed experimental results
in Table 1. In addition to the test accuracy after each task, we also
report the performance drop rate to demonstrate the effect of differ-
ent approaches on the forgetting issue. As shown in the table, our
CoSR performs best in the continual learning phase with the final
test accuracy 49.69%. Among the baselines, the fine-tuning method
only has 2.65% accuracy as the lower bound since it fine-tunes the
model with only a few samples and ignores the learning of old
classes. Similar to our CoSR, SemanKL also uses word embeddings
as semantic knowledge. But SemanKL performs worse than our
CoSR since it projects the visual features to the word embedding
space to regularize the learning of visual features. Due to the spar-
sity of the semantic space, this method cannot effectively utilize
semantic information to learn good visual representations. Differ-
ently, we design a semantic fusion Transformer to fuse and align the
visual and textual features, which is more effective than SemanKL
and achieves higher accuracy. CEC, as a strong baseline, performs
very close to our method. But our CoSR has a lower performance
drop rate 31.45% compared to CEC with 32.75%, and outperforms
CEC beginning at the arriving of the fourth task. The experimental



Continual Few-shot Learning with Transformer Adaptation and Knowledge Regularization WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Experimental results on CIFAR100.

Model Test accuracy after each task PD rate (%)↓0 1 2 3 4 5 6 7 8
fine-tune 64.10 36.91 15.37 9.80 6.67 3.80 3.70 3.14 2.65 95.87
iCaRL [27] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 78.58
EEIL [3] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 75.27
NCM [15] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 78.88
TOPIC [36] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 54.18

Self-promote [47] 64.10 65.86 61.36 57.34 53.69 50.75 48.58 45.66 43.25 32.53
SemanKL [7] 64.10 57.80 50.60 48.20 42.50 40.10 38.70 36.90 34.80 45.71
CEC [44] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 32.75

ours (CoSR) 72.48 68.29 64.36 60.93 58.09 55.63 53.48 51.64 49.69 31.44

Table 2: Experimental results on MiniImageNet.

Model Test accuracy after each task PD rate (%)↓0 1 2 3 4 5 6 7 8
fine-tune 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 97.72
iCaRL [27] 61.31 46.32 42.94 37.63 30.49 24 20.89 18.80 17.21 71.93
EEIL [3] 61.31 46.58 44 37.29 33.14 27.12 24.1 21.57 19.58 68.06
NCM [15] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 76.89
TOPIC [36] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 60.17

Self-promote [47] 61.31 64.24 60.8 58.0 53.9 50.6 48.88 45.07 41.92 31.63
SemanKL [7] 61.31 58.70 53.10 49.50 47.80 45.00 41.90 40.20 39.04 36.32
CEC [44] 72.55 67.52 63.14 59.42 56.16 53.29 50.97 48.97 47.09 35.09

ours (CoSR) 71.92 66.91 62.71 59.59 56.63 53.78 51.01 49.23 47.93 33.36

results on CIFAR100 indicate the effectiveness of our CoSR with
semantic knowledge regularization.

MiniImageNet. To evaluate the performance of CoSR, we con-
duct experiments on MiniImageNet. There are eight novel tasks
in the experiment, and the visualization results of the average test
accuracy after each task are shown in Figure 3. The phenomenon of
performance drop is similar to the result on CIFAR100. These meth-
ods, which are specially designed for continual few-shot learning,
such as CEC [44], SemanKL [7], Self-promote [47] and TOPIC [36]
have better performance than others for continual learning, in-
dicating that the well-designed algorithms for few-shot learning
have the ability to learn fast from a few new samples. After learn-
ing the base task, the initial test accuracies of the CEC algorithm
and our CoSR algorithm are higher than other models. Our CoSR
begins to achieve the best test accuracy after learning the third
task, which verifies the effectiveness of our Transformer-based
prototypes adaptation mechanism in few shot continual learning.

Furthermore, we report detailed experimental results on Mini-
ImageNet in Table 2. In addition to the test accuracy after each
task, we also report the performance drop rate to demonstrate the
severity of the forgetting problem for different methods during the
continual learning phase. As shown in the table, our CoSR algo-
rithm has a final test accuracy of 47.93% after learning all tasks,
outperforming other benchmark models. In the baseline model, the
fine-tuning method has an accuracy of only 1.40%, and the accura-
cies of other methods designed only for continual learning scenarios
are lower than 20%. The algorithms designed for continual few-shot
learning scenarios perform relatively well. The final accuracy of
the CEC model reached 47.09%, which is the best method among
the existing baselines. In terms of performance drop rate, our al-
gorithm has a performance drop rate of 31.35%, which is better
among all algorithms. It is worth noting that the performance drop
rate of the Self-promote [47] is 31.63%, which is also very close to

CoSR. However, in the absolute value of the final accuracy, CoSR
clearly outperforms the Self-promote algorithm as new tasks com-
ing. Overall, the experimental results on MiniImageNet show the
effectiveness of our CoSR algorithm in continual few-shot learning
scenarios. Using semantic knowledge regularization to enhance the
visual feature learning can significantly improve the generalization
performance of the model.

CUB200.We conduct experiments on CUB200 to verify the ef-
fectiveness of the CoSR algorithm. In the CUB200 experiment, the
model needs to learn ten new tasks, and the average test accuracy
after learning each task is shown in Figure 3. In the continual learn-
ing stage, the average accuracy of all models decreased to varying
degrees. Among them, the performance of the iCaRL [27], EEIL [3]
and NCM [15] algorithms decreased faster, indicating that they
cannot quickly learn knowledge of new categories and distinguish
new categories from old ones in the continual few-shot learning
scenario. The reason is that the training of these algorithms on
new tasks relies on a large amount of labeled data and thus has
poor performance in scenarios with only a few new samples. In
contrast, methods for continual few-shot learning perform much
better, among which our CoSR algorithm achieves the highest accu-
racy among all algorithms. This demonstrates that using semantic
knowledge regularization to constrain the learning of visual fea-
tures is effective. The generalization performance of the model on
new categories with few samples is improved in CoSR. Meanwhile,
our CoSR algorithm also outperforms other benchmark algorithms
in terms of performance drop rate.

We showmore detailed experimental results in Table 3, including
the test accuracy after each task and the final performance drop
rate. Through the performance drop rate, we can evaluate how
well the model alleviates the catastrophic forgetting problem in the
continual few-shot learning scenario. From the experimental results
of CUB200, we can conclude that our CoSR algorithm performs
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Table 3: Experimental results on CUB200.

Model Test accuracy after each task PD rate (%)↓0 1 2 3 4 5 6 7 8 9 10
fine-tune 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.60 8.93 8.93 8.47 87.67
iCaRL [27] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 69.19
EEIL [3] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 67.81
NCM [15] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 71.07
TOPIC [36] 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28 61.74

Self-promote [47] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 45.65
SemanKL [7] 68.23 60.45 55.70 50.45 45.72 42.90 40.89 38.77 36.51 34.87 32.96 51.69
CEC [44] 77.24 73.04 68.95 63.45 62.62 58.87 57.95 55.11 52.87 52.65 51.30 33.58

ours (CoSR) 74.87 73.15 68.23 63.50 62.72 59.10 57.46 55.73 53.28 52.31 51.75 30.87

Table 4: Experimental results on industrial dataset Goofish.
We use the precision and recall on the test set as metrics.

Model Full categories Few-shot categories
Precision Recall Precision Recall

Binary-class 0.37 0.45 - -
Multi-class 0.4026 0.4569 0.0470 0.3277

Multi-class++ 0.3958 0.4607 0.0453 0.3109
ours (CoSR) 0.4349 0.4647 0.0538 0.3277

the best in the continual learning stage, with a final test accuracy
of 51.75%. Among the benchmark models, the final accuracy of
the fine-tuning method is only 8.47%, which is the lower bound
of the benchmark models. The Self-promote, SemanKL and CEC
algorithms perform relatively well, and the final accuracy rates are
all above 30%. The final accuracy of the CEC algorithm is 51.30%,
which is lower than the final accuracy of our algorithm CoSR, i.e.,
51.75%. From the perspective of performance drop rate, our CoSR
has the lowest performance drop rate of 30.87%, indicating that
under the constraint of semantic knowledge regularization, CoSR
can learn a better visual feature space and alleviate the catastrophic
forgetting problem in few shot continual learning. In contrast, the
performance drop rate of the CEC algorithm is 33.58%, which is
worse than our CoSR algorithm.

4.3 Experimental results on industrial datasets
Goofish. To further evaluate the learning ability of CoSR on the
industrial dataset, we conduct experiments on a multi-modal clas-
sification dataset with a long-tailed distribution. This dataset is a
multi-modal commodity dataset in the real world, which contains
multi-modal information, such as images, titles, and descriptions
of online commodities. The labels of online commodities include
whether one particular product is illegal and which category it
belongs to. Each category has a name as the semantic knowledge
corresponding to the illegal product. The base task here is to de-
termine whether a target product belongs to the illegal categories,
which is a binary classification task. The illegal product category
has a corresponding name as the semantic knowledge for base
learning and continual learning. Since the dataset has long-tail dis-
tribution, we split it into the base classes and the few-shot classes.
We take the category with a relatively small amount of data as
few-shot classes and learn the few-shot classes in the continual
learning phase. The other categories in the full dataset are used
as the base classes to train the model in the base learning phase.
Note that the categories in the few-shot classes do not overlap with
those in the base classes.

In order to conduct comparative experiments, we design three
baseline models on the industrial dataset, namely the binary classi-
fication model, multi-classification model, and semantic-assisted
multi-classification model (multi-classification++). Among them,
the binary classification model directly classifies the given prod-
uct to determine whether it is in the illegal category. The multi-
classification model aims to classify whether the given product is
illegal and if so, which illegal category it belongs to. The semantic-
assisted multi-classification model (multi-classification++) utilizes
semantic knowledge from categorical information to assist the clas-
sification. Our proposed CoSR model concatenates the semantic
vectors with the original visual features in order to better handle the
real-world industrial scenario. We use the classification precision
and recall on the full test set as evaluation metrics.

For the full categories, we can observe that the performance of
our proposed CoSR on Goofish dataset is improved, indicating that
our CoSR model has better classification ability on the long-tail
distributed dataset. For the few-shot categories, our CoSR model
can also achieve improvement over baselines in terms of both pre-
cision and recall. Due to the small number of labeled samples in
the few-shot categories, traditional classification models usually
fail to learn effective information from these few labeled samples
and thus ignore them. CoSR extracts semantic knowledge from
the long-tailed distributed categories to enhance the learning of
multi-modal representations. By adding constraints to multi-modal
representation learning, our model can quickly estimate the optimal
category prototypes in the continual few-shot learning scenario.
The performance of CoSR on the categories with long-tail distribu-
tion shows that our proposed model can significantly enhance the
continual few shot classification ability through semantic knowl-
edge regularization.

5 CONCLUSION
In this paper, we propose a novel approach, CoSR, to tackle the prob-
lem of continual few-shot learning. The well-designed Transformer
adaptation in CoSR mines complex relationships between visual sig-
nals and semantic knowledge to generate suitable visual prototypes
for continual few-shot classification. The semantic knowledge ac-
tually provides valid anchors for the visual prototypes in continual
learning, thus alleviating catastrophic forgetting significantly with
only a limited amount of data. Extensive experiments on both pub-
lic and industrial data demonstrate the superiority of our proposed
CoSR model over the state-of-the-art models. For future work, more
types of semantic knowledge such as knowledge graph and com-
monsense knowledge can be explored for further investigations.
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